
CSE 451: Operating Systems

Winter 2026

Module 5

Threads

Gary Kimura

2

What’s “in” a process?

• A process consists of (at least):
– An address space, containing

• the code (instructions) for the running program
• the data for the running program

– Thread state, consisting of
• The program counter (PC), indicating the next instruction
• The stack pointer register (implying the stack it points to)
• Other general purpose register values

– A set of OS resources
• open files, network connections, sound channels, …

• That’s a lot of concepts bundled together!
• Today: decompose …

– address space
– thread of control (stack, stack pointer, program counter, registers)
– OS resources

3

Module overview

• Big picture: Achieving concurrency/parallelism

• Kernel threads

• User-level threads

4

The Big Picture

• Threads are about concurrency and parallelism
– Parallelism: physically simultaneous operations for

performance

– Concurrency: logically (and possibly physically)
simultaneous operations for convenience/simplicity

• One way to get concurrency and parallelism is to use
multiple processes
– The programs (code) of distinct processes are isolated from

each other

• Threads are another way to get concurrency and
parallelism
– Threads “share a process” – same address space, same OS

resources

– Threads have private stack, CPU state – are schedulable

5

Concurrency/Parallelism

• Imagine a web server, which might like to handle multiple
requests concurrently
– While waiting for the credit card server to approve a purchase for

one client, it could be retrieving the data requested by another
client from disk, and assembling the response for a third client from
cached information

• Imagine a web client (browser), which might like to initiate
multiple requests concurrently
– The CSE home page has dozens of “src= …” html commands,

each of which is going to involve a lot of sitting around! Wouldn’t it
be nice to be able to launch these requests concurrently?

• Imagine a parallel program running on a multiprocessor, which
might like to employ “physical concurrency”
– For example, multiplying two large matrices – split the output matrix

into k regions and compute the entries in each region concurrently,
using k processors

6

What’s needed?

• In each of these examples of concurrency (web
server, web client, parallel program):
– Everybody wants to run the same code

– Everybody wants to access the same data

– Everybody has the same privileges

– Everybody uses the same resources (open files, network
connections, etc.)

• But you’d like to have multiple hardware execution
states:
– an execution stack and stack pointer (SP)

• traces state of procedure calls made

– the program counter (PC), indicating the next instruction

– a set of general-purpose processor registers and their values

7

How could we achieve this?

• Given the process abstraction as we know it:
– fork several processes

– cause each to map to the same physical memory to share
data

• see the shmget() system call for one way to do this (kind of)

• This is like making a pig fly – it’s really inefficient
– space: PCB, page tables, etc.

– time: creating OS structures, fork/copy address space, etc.

• Some equally bad alternatives for some of the
examples:
– Entirely separate web servers

– Manually programmed asynchronous programming (non-
blocking I/O) in the web client (browser)

8

Key Idea

• Separate the concept of a process (address space,
OS resources

• … from that of a minimal “thread of control”
(execution state: stack, stack pointer, program
counter, registers)

• This execution state is usually called a thread, or
sometimes, a lightweight process

thread

9

Threads and processes

• Most modern OS’s (Mach (Mac OS), Chorus, Windows,
UNIX) therefore support two entities:
– the process, which defines the address space and general

process attributes (such as open files, etc.)
– the thread, which defines a sequential execution stream within a

process

• A thread is bound to a single process / address space
– address spaces, however, can have multiple threads executing

within them
– sharing data between threads is cheap: all see the same

address space
– creating threads is cheap too!

• Threads become the unit of scheduling
– processes / address spaces are just containers in which threads

execute

10

• Threads are concurrent executions sharing an address
space (and some OS resources)

• Address spaces provide isolation
– If you can’t name it, you can’t read or write it

• Hence, communicating between processes is expensive
– Must go through the OS to move data from one address space

to another

• But threads are in the same address space, so
communication is simple/cheap
– Just update a shared variable!

– And use locks to control access

11

The design space

address
space

thread

one thread per process
many processes

many threads per process
many processes

one thread per process
one process

many threads per process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, …

Key

12

(old) Process address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

13

(new) Address space with threads

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)
thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)
PC (T3)

14

Value of process/thread separation

• Concurrency (multithreading) is useful for:
– handling concurrent events (e.g., web servers and clients)

– building parallel programs (e.g., matrix multiply, ray tracing)

– improving program structure

• Multithreading is useful even on a uniprocessor
– even though only one thread can run at a time

• Supporting multithreading – that is, separating the
concept of a process (address space, files, etc.) from
that of a minimal thread of control (execution state),
is a big win
– creating concurrency does not require creating new

processes

– “faster / better / cheaper”

15

Terminology

• Just a note that there’s the potential for some
confusion …
– Old world: “process” == “address space + OS resources +

single thread”
– New world: “process” typically refers to an address space +

system resources + all of its threads …
• When we mean the “address space” we need to be explicit

“thread” refers to a single thread of control within a process /
address space

• A bit like “kernel” and “operating system” …
– Old world: “kernel” == “operating system” and runs in

“kernel mode”
– New world: “kernel” typically refers to the microkernel; lots

of the operating system runs in user mode

16

Moving on

• That was the big picture to motivate usings threads
• Now how are the implemented…

17

“Where do threads come from?”

• Natural answer: the OS is responsible for
creating/managing threads
– For example, the kernel call to create a new thread would

• allocate an execution stack within the process address space

• create and initialize a Thread Control Block
– stack pointer, program counter, register values

• stick it on the ready queue

– We call these kernel threads

– There is a “thread name space”
• Thread id’s (TID’s)

• TID’s are integers (surprise!)

18

address
space

thread

Mach, NT,
Chorus,
Linux, …

os kernel

(thread create, destroy,
signal, wait, etc.)

CPU

Kernel threads

This example has 6 TCBs
Managed by the OS

19

address
space

thread

os kernel

(thread create, destroy,
signal, wait, etc.)

CPU

Kernel threads

Users call CreateThread()
(a kernel call)

20

Kernel threads

• OS now manages threads and processes / address spaces
– all thread operations are implemented in the kernel

– OS schedules all of the threads in a system
• if one thread in a process blocks (e.g., on I/O), the OS knows about it,

and can run other threads from that process

• possible to overlap I/O and computation inside a process

• Kernel threads are cheaper than processes
– less state to allocate and initialize

• But, they’re still pretty expensive for fine-grained use
– orders of magnitude more expensive than a procedure call

– thread operations are all system calls
• context switch

• argument checks

21

• There is an alternative to kernel threads

• Threads can also be managed at the user level (that
is, entirely from within the process)
– a library linked into the program manages the threads

• because threads share the same address space, the thread
manager doesn’t need to manipulate address spaces (which
only the kernel can do)

• threads differ (roughly) only in hardware contexts (PC, SP,
registers), which can be manipulated by user-level code

• the thread package multiplexes user-level threads on top of
kernel thread(s)

• each kernel thread is treated as a “virtual processor”

– we call these user-level threads

“Where do threads come from” (2)

2222

address
space

thread

os kernel

CPU

User-level threads
user-level

thread library

(thread create, destroy,
signal, wait, etc.)

3 TCBs managed
by the OS

A total of 6 tcbs
managed by

User thread package

232323

address
space

thread

os kernel

CPU

User-level threads: what the kernel sees

3 TCBs managed
by the OS

2424

address
space

thread

Mach, NT,
Chorus,
Linux, …

os kernel

(kernel thread create, destroy,
signal, wait, etc.)

CPU

User-level threads: the full story
user-level

thread library

(thread create, destroy,
signal, wait, etc.)

kernel threads

25

Some things to keep in mind

• Kernel Threads are managed by the kernel for
scheduling on a CPU

• User Level Threads are managed by a user library
(e.g., pthreads) for scheduling on a kernel thread

• Therefore, nothing gets done without using a kernel
thread, just as nothing gets done without using the
underlying CPU

• And never forget that threads exist within a process.

26

address
space

thread

os kernel

CPU

Kernel threads

TCB

TCB

TCB

A context switch involves
a kernel call

2727

address
space

thread

os kernel

CPU

User-level threads

TCB

tcb

tcb tcb

Here a context switch is a
simple procedure call

28

User-level threads

• User-level threads are small and fast
– managed entirely by user-level library

• E.g., pthreads (libpthreads.a)

– each thread is represented simply by a PC, registers, a stack,
and a small thread control block (TCB)

– creating a thread, switching between threads, and
synchronizing threads are done via procedure calls

• no kernel involvement is necessary!

– user-level thread operations can be 10-100x faster than kernel
threads as a result

29

Performance example

• On a 700MHz Pentium running Linux 2.2.16 (only the
relative numbers matter; ignore the ancient CPU!):

– Processes
• fork/exit: 251 ms

– Kernel threads
• pthread_create()/pthread_join(): 94 ms (2.5x faster –

~150ms faster)

– User-level threads
• pthread_create()/pthread_join: 4.5 ms (another 20x

faster - ~100ms faster)

Why?

Why?

3030

User-level thread implementation

• The OS schedules the kernel thread

• The kernel thread executes user code, including the
thread support library and its associated thread
scheduler

• The thread scheduler determines when a user-level
thread runs
– it uses queues to keep track of what threads are doing: run,

ready, wait
• just like the OS and processes

• but, implemented at user-level as a library

31

Thread interface

• This is taken from the POSIX pthreads API:

– rcode = pthread_create(&t, attributes,
start_procedure)

• creates a new thread of control

• new thread begins executing at start_procedure

– pthread_cond_wait(condition_variable, mutex)
• the calling thread blocks, sometimes called thread_block()

– pthread_signal(condition_variable)
• starts a thread waiting on the condition variable

– pthread_exit()
• terminates the calling thread

– pthread_wait(t)
• waits for the named thread to terminate

32

Thread context switch

• Very simple for user-level threads:
– save context of currently running thread

• push CPU state onto thread stack

– restore context of the next thread
• pop CPU state from next thread’s stack

– return as the new thread
• execution resumes at PC of next thread

– Note: no changes to memory mapping required!

• This is all done by assembly language
– it works at the level of the procedure calling convention

• thus, it cannot be implemented using procedure calls

33

• Strategy 1: force everyone to cooperate
– a thread willingly gives up the CPU by calling yield()
– yield() calls into the scheduler, which context switches to

another ready thread
– what happens if a thread never calls yield()?

• Strategy 2: use preemption
– scheduler requests that a timer interrupt be delivered by the

OS periodically
• usually delivered as a UNIX signal (man signal)
• signals are just like software interrupts, but delivered to user-

level by the OS instead of delivered to OS by hardware

– at each timer interrupt, scheduler gains control and context
switches as appropriate

How to keep a user-level thread from
hogging the CPU?

34

What if a thread tries to do I/O?

• The kernel thread “powering” it is lost for the duration
of the (synchronous) I/O operation!
– The kernel thread blocks in the OS, as always

– It maroons with it the state of the user-level thread

• Could have one kernel thread “powering” each user-
level thread
– “common case” operations (e.g., synchronization) would be

quick

• Could have a limited-size “pool” of kernel threads
“powering” all the user-level threads in the address
space
– the kernel will be scheduling these threads, obliviously to

what’s going on at user-level

3535

address
space

thread

os kernel

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

(kernel thread create, destroy,
signal, wait, etc.)

CPU

Multiple kernel threads “powering”
each address space

kernel threads

5 TCBs

Total of 6 tcbs

3636

address
space

thread

os kernel

CPU

When it is running a blue user thread
must be tied into a red kernel thread

which must be tied into a CPU

kernel threads

5 TCBs

User threads
Total of 6 tcbs

CPU

3737

address
space

thread

os kernel

CPU

When it is running a blue user thread
must be tied into a red kernel thread

which must be tied into a CPU

kernel threads

5 TCBs

User threads
Total of 6 tcbs

CPU

3838

address
space

thread

os kernel

CPU

When it is running a blue user thread
must be tied into a red kernel thread

which must be tied into a CPU

kernel threads

5 TCBs

User threads
Total of 6 tcbs

CPU

3939

address
space

thread

os kernel

CPU

When it is running a blue user thread
must be tied into a red kernel thread

which must be tied into a CPU

kernel threads

5 TCBs

User threads
Total of 6 tcbs

CPU

4040

address
space

thread

os kernel

CPU

When it is running a blue user thread
must be tied into a red kernel thread

which must be tied into a CPU

kernel threads

5 TCBs

User threads
Total of 6 tcbs

CPU

41

Viewed from another angle

 Kernel threads are managed by the kernel for
scheduling on a CPU

 User threads are managed by the user for
scheduling on a Kernel thread

 At the bottom is the CPU

 Just as nothing can get accomplished with a CPU,
nothing can get accomplished without a kernel
thread executing on a CPU

42

Now the big gotcha with user threads

• What if the kernel preempts a thread
holding a lock?

• Other threads will be unable to enter the critical
section and will block (stall)

43

Addressing these problems

• Effective coordination of kernel decisions and user-
level threads requires OS-to-user-level
communication
– OS notifies user-level that it is about to suspend a kernel

thread

• This is called “scheduler activations”
• a research paper from UW with huge effect on practice

• each process can request one or more kernel threads
– process is given responsibility for mapping user-level threads onto

kernel threads

– kernel promises to notify user-level before it suspends or destroys
a kernel thread

• ACM TOCS 10,1

44

Summary
• You really want multiple threads per address space

• Kernel threads are much more efficient than
processes, but they’re still not cheap
– all operations require a kernel call and parameter validation

• User-level threads are:
– really fast/cheap

– great for common-case operations
• creation, synchronization, destruction

– can suffer in uncommon cases due to kernel obliviousness
• I/O

• preemption of a lock-holder

• Scheduler activations are an answer
– pretty subtle though

45

The design space

address
space

thread

one thread/process
many processes

many threads/process
many processes

one thread/process
one process

many threads/process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, …

