CSE 451: Operating Systems
Winter 2026

Module 5
Threads

Gary Kimura



What's “Iin” a process?

* A process consists of (at least):

— An address space, containing
 the code (instructions) for the running program
* the data for the running program

— Thread state, consisting of
« The program counter (PC), indicating the next instruction
» The stack pointer register (implying the stack it points to)
« Other general purpose register values

— A set of OS resources
» open files, network connections, sound channels, ...

« That's a lot of concepts bundled together!

« Today: decompose ...
— address space
— thread of control (stack, stack pointer, program counter, registers)
— OS resources



Module overview

» Big picture: Achieving concurrency/parallelism
* Kernel threads
» User-level threads



The Big Picture

Threads are about concurrency and parallelism

— Parallelism: physically simultaneous operations for
performance

— Concurrency: logically (and possibly physically)
simultaneous operations for convenience/simplicity

One way to get concurrency and parallelism is to use

multiple processes

— The programs (code) of distinct processes are isolated from
each other
Threads are another way to get concurrency and
parallelism

— Threads “share a process” — same address space, same OS
resources

— Threads have private stack, CPU state — are schedulable



Concurrency/Parallelism

Imagine a web server, which might like to handle multiple
requests concurrently
— While waiting for the credit card server to approve a purchase for
one client, it could be retrieving the data requested by another
client from disk, and assembling the response for a third client from
cached information
Imagine a web client (browser), which might like to initiate
multiple requests concurrently
— The CSE home page has dozens of “src=...” html commands,
each of which is going to involve a lot of sitting around! Wouldn't it
be nice to be able to launch these requests concurrently?
Imagine a parallel program running on a multiprocessor, which
might like to employ “physical concurrency”
— For example, multiplying two large matrices — split the output matrix

into k regions and compute the entries in each region concurrently,
using k processors



What's needed?

* In each of these examples of concurrency (web
server, web client, parallel program):
— Everybody wants to run the same code
— Everybody wants to access the same data
— Everybody has the same privileges
— Everybody uses the same resources (open files, network
connections, etc.)
« But you'd like to have multiple hardware execution
states:

— an execution stack and stack pointer (SP)
 traces state of procedure calls made

— the program counter (PC), indicating the next instruction
— a set of general-purpose processor registers and their values

6



How could we achieve this?

* Given the process abstraction as we know it:

— fork several processes
— cause each to map to the same physical memory to share
data
» see the shmget () system call for one way to do this (kind of)
« This is like making a pig fly — it's really inefficient
— space: PCB, page tables, etc.
— time: creating OS structures, fork/copy address space, etc.

« Some equally bad alternatives for some of the
examples:
— Entirely separate web servers

— Manually programmed asynchronous programming (non-
blocking I/O) in the web client (browser)



Key ldea

« Separate the concept of a process (address space,
OS resources

e ... from that of a minimal “thread of control”
(execution state: stack, stack pointer, program
counter, registers)

» This execution state is usually called a thread, or
sometimes, a lightweight process

% <«—— thread



Threads and processes

* Most modern OS’s (Mach (Mac OS), Chorus, Windows,
UNIX) therefore support two entities:

— the process, which defines the address space and general
process attributes (such as open files, etc.)

— the thread, which defines a sequential execution stream within a
process
« A thread is bound to a single process / address space

— address spaces, however, can have multiple threads executing
within them

— sharing data between threads is cheap: all see the same
address space

— creating threads is cheap too!

« Threads become the unit of scheduling

— processes / address spaces are just containers in which threads
execute



Threads are concurrent executions sharing an address
space (and some OS resources)

Address spaces provide isolation
— If you can’t name it, you can’t read or write it

Hence, communicating between processes is expensive
— Must go through the OS to move data from one address space
to another
But threads are in the same address space, so
communication is simple/cheap
— Just update a shared variable!
— And use locks to control access

10



Key

address
space

3

thread

The design space

MS/DOS

one thread per process
one process

3

3

3

3

one thread per process

many processes

older
UNIXes

s 3
Java % %

many threads per process
one process

3
33

33

3

Mach, NT,
Chorus,
Linux, ...

many threads per process
many processes

11



(old) Process address space

OXFFFFFFFF

A

address space

v

0x00000000

stack
(dynamic allocated mem)

’
T

heap
(dynamic allocated mem)

static data
(data segment)

code
(text segment)

«— SP

“— PC

12



(new) Address space with threads

OXFFFFFFFF

A

address space

v

0x00000000

thread 1 stack

;

thread 2 stack

;

thread 3 stack

;
T

heap
(dynamic allocated mem)

static data
(data segment)

code
(text segment)

«— SP(T1)

— SP (T2)

— SP(T3)

~— PC (T2)
«~—— PC (T1)
~— PC (T3)

13



Value of process/thread separation

« Concurrency (multithreading) is useful for:
— handling concurrent events (e.g., web servers and clients)
— building parallel programs (e.g., matrix multiply, ray tracing)
— Improving program structure

« Multithreading is useful even on a uniprocessor
— even though only one thread can run at a time

« Supporting multithreading — that is, separating the
concept of a process (address space, files, etc.) from
that of a minimal thread of control (execution state),
IS a big win

— creating concurrency does not require creating new
processes
— “faster / better / cheaper”

14



Terminology

« Just a note that there’s the potential for some
confusion ...

— Old world: “process” == “address space + OS resources +
single thread”

— New world: “process” typically refers to an address space +
system resources + all of its threads ...

« When we mean the “address space” we need to be explicit

“thread” refers to a single thread of control within a process /
address space

« A bit like “kernel” and “operating system” ...

— Old world: “kernel” == “operating system” and runs in
“kernel mode”

— New world: “kernel” typically refers to the microkernel; lots
of the operating system runs in user mode

15



Moving on

« That was the big picture to motivate usings threads
 Now how are the implemented...

16



“Where do threads come from?”

* Natural answer: the OS is responsible for
creating/managing threads
— For example, the kernel call to create a new thread would

 allocate an execution stack within the process address space

» create and initialize a Thread Control Block
— stack pointer, program counter, register values

« stick it on the ready queue

— We call these kernel threads

— There is a “thread name space”
« Thread id’s (TID’s)
« TID’s are integers (surprise!)

17



address
space

3

thread

Kernel threads

Mach, NT,
Chorus,

H B
/ / / / Linux, ...

././ | 'é)s k:ernel ! This example has 6 TCBs
Managed by the OS

N
CPU \_

(thread create, destroy,
signal, wait, etc.)

18



Kernel threads

Users call CreateThread()

address 77? 3 (a kemel call)

% j/‘/ .gsk;rQel l X
thread CPU \_

(thread create, destroy,
signal, wait, etc.)

19



Kernel threads

« OS now manages threads and processes / address spaces
— all thread operations are implemented in the kernel

— OS schedules all of the threads in a system

 if one thread in a process blocks (e.g., on I/O), the OS knows about it,
and can run other threads from that process

» possible to overlap I/0O and computation inside a process
« Kernel threads are cheaper than processes
— less state to allocate and initialize

« But, they're still pretty expensive for fine-grained use
— orders of magnitude more expensive than a procedure call

— thread operations are all system calls
 context switch
« argument checks

20



“Where do threads come from” (2)

 There is an alternative to kernel threads

« Threads can also be managed at the user level (that
IS, entirely from within the process)

— a library linked into the program manages the threads

» because threads share the same address space, the thread
manager doesn’t need to manipulate address spaces (which
only the kernel can do)

« threads differ (roughly) only in hardware contexts (PC, SP,
registers), which can be manipulated by user-level code

 the thread package multiplexes user-level threads on top of
kernel thread(s)

» each kernel thread is treated as a “virtual processor”
— we call these user-level threads

21



address
space

3

thread

User-level threads

53 12

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

A total of 6 tcbs
managed by
User thread package

l

'Y
os kernel

l

3 TCBs managed
by the OS

CPU

22



User-level threads: what the kernel sees

address
space

3

thread

l

'Y
os kernel

l

CPU

3 TCBs managed
by the OS

23



User-level threads: the full story

user-level
thread library

% % i/ (thread create, destroy,
e Mach. NT signal, wait, etc.)
% % //? Ca; J ]
address 4 » orus,
Space % %
% ! s kermel kernel threads
N
thread CPU

(kernel thread create, destroy,
signal, wait, etc.)

24



Some things to keep in mind

Kernel Threads are managed by the kernel for
scheduling on a CPU

User Level Threads are managed by a user library
(e.g., pthreads) for scheduling on a kernel thread

Therefore, nothing gets done without using a kernel
thread, just as nothing gets done without using the
underlying CPU

And never forget that threads exist within a process.

25



address
space

3

thread

Kernel threads

A context switch involves

TCB ——

? i a kernel call
/ \ \ TCB
—
*‘/ }os kerr}el
CPU

TCB

26



address
space

3

thread

User-level threads

tco — |, %

3 3

tcb

-—— {cb

Here a context switch is a
simple procedure call

TCB —

\+l os kernel

CPU

27



User-level threads

« User-level threads are small and fast
— managed entirely by user-level library
 E.g., pthreads (1ibpthreads.a)

— each thread is represented simply by a PC, registers, a stack,
and a small thread control block (TCB)

— creating a thread, switching between threads, and
synchronizing threads are done via procedure calls
* no kernel involvement is necessary!
— user-level thread operations can be 10-100x faster than kernel
threads as a result

28



Performance example

* On a 700MHz Pentium running Linux 2.2.16 (only the
relative numbers matter; ignore the ancient CPU!):

— Processes
« fork/exit: 251 us

Why?
— Kernel threads P

* pthread create()/pthread join():94 us (2.5x faster —
~150us faster)

— User-level threads

- pthread create()/pthread join: 4.5 pus (another 20x
faster - ~100us faster)

Why?

29



User-level thread implementation

e The OS schedules the kernel thread

* The kernel thread executes user code, including the
thread support library and its associated thread
scheduler

 The thread scheduler determines when a user-level
thread runs

— it uses queues to keep track of what threads are doing: run,
ready, wait
« just like the OS and processes
* but, implemented at user-level as a library

30



Thread interface

This is taken from the POSIX pthreads API:

rcode = pthread create(&t, attributes,
start procedure)

 creates a new thread of control
* new thread begins executing at start_procedure
pthread cond wait (condition variable, mutex)
« the calling thread blocks, sometimes called thread_block()
pthread signal (condition variable)
« starts a thread waiting on the condition variable
pthread exit ()
« terminates the calling thread
pthread wait (t)
 waits for the named thread to terminate

31



Thread context switch

« Very simple for user-level threads:
— save context of currently running thread
» push CPU state onto thread stack
— restore context of the next thread
» pop CPU state from next thread’s stack
— return as the new thread
» execution resumes at PC of next thread
— Note: no changes to memory mapping required!

* This is all done by assembly language

— it works at the level of the procedure calling convention
 thus, it cannot be implemented using procedure calls

32



How to keep a user-level thread from
hogging the CPU?

« Strategy 1: force everyone to cooperate
— a thread willingly gives up the CPU by calling yield()
— yield() calls into the scheduler, which context switches to
another ready thread
— what happens if a thread never calls yield () ?

« Strategy 2: use preemption
— scheduler requests that a timer interrupt be delivered by the
OS periodically
 usually delivered as a UNIX signal (man signal)

* signals are just like software interrupts, but delivered to user-
level by the OS instead of delivered to OS by hardware

— at each timer interrupt, scheduler gains control and context
switches as appropriate

33



What if a thread tries to do I/O?

* The kernel thread “powering” it is lost for the duration
of the (synchronous) |I/O operation!
— The kernel thread blocks in the OS, as always
— It maroons with it the state of the user-level thread

« Could have one kernel thread “powering” each user-

level thread
— “common case” operations (e.g., synchronization) would be
quick

* Could have a limited-size “pool” of kernel threads
“powering” all the user-level threads in the address
space

— the kernel will be scheduling these threads, obliviously to
what’s going on at user-level

34



Multiple kernel threads “powering”

Total of 6 tcbs % % % P
% % )
%
2
address i u” .
space %% %
)
% i oS kerqel ‘e
thread CPU \_

(kernel thread create, destroy,
signal, wait, etc.)

ce
user-level
thread library

(thread create, destroy,
signal, wait, etc.)

kernel threads
5TCBs

35



When it is running a blue user thread
must be tied into a red kernel thread
which must be tied into a CPU

s |53
33 [z
address ? .
space % %
% / 0S ke‘rnel
thread CPU CPU

User threads
Total of 6 tcbs

\

kernel threads
5TCBs

36



When it is running a blue user thread
must be tied into a red kernel thread
which must be tied into a CPU

% % %«e ) User threads
% % % Total of 6 tcbs
address a
space %
% { os ke‘rnel ‘¢ o kernel threads

thread CPU CPU > 1CBs

37



When it is running a blue user thread
must be tied into a red kernel thread
which must be tied into a CPU

% % %«e ) User threads
% % Total of 6 tcbs
address -
space %
% { os ke‘rnel ‘¢ o kernel threads

thread CPU CPU > 1CBs

38



When it is running a blue user thread
must be tied into a red kernel thread
which must be tied into a CPU

% % %«e ) User threads
% % % Total of 6 tcbs
address r?
space %%
% A ske‘rnel ‘¢ o kernel threads

5 TCBs

thread CPU CPU

39



When it is running a blue user thread
must be tied into a red kernel thread
which must be tied into a CPU

% % %«e ) User threads
% % % Total of 6 tcbs
address r?
space %%
% A os ke‘rne ‘¢ o kernel threads

5 TCBs

thread CPU CPU

40



Viewed from another angle
e Kernel threads are managed by the kernel for
scheduling on a CPU

e User threads are managed by the user for
scheduling on a Kernel thread

e At the bottom is the CPU

e Just as nothing can get accomplished with a CPU,
nothing can get accomplished without a kernel
thread executing on a CPU

41



Now the big gotcha with user threads

 What if the kernel preempts a thread
holding a lock?

 QOther threads will be unable to enter the critical
section and will block (stall)

42



Addressing these problems

Effective coordination of kernel decisions and user-
level threads requires OS-to-user-level

communication

— OS notifies user-level that it is about to suspend a kernel
thread

This is called “scheduler activations”
« aresearch paper from UW with huge effect on practice

» each process can request one or more kernel threads
— process is given responsibility for mapping user-level threads onto
kernel threads
— kernel promises to notify user-level before it suspends or destroys
a kernel thread

« ACM TOCS 10,1

43



Summary

You really want multiple threads per address space

Kernel threads are much more efficient than
processes, but they're still not cheap

— all operations require a kernel call and parameter validation

User-level threads are:
— really fast/cheap

— great for common-case operations
 creation, synchronization, destruction

— can suffer in uncommon cases due to kernel obliviousness
e |/O

» preemption of a lock-holder

Scheduler activations are an answer
— pretty subtle though

44



address

space

3

thread

The design space

MS/DOS

one thread/process
one process

3

3

3

3

one thread/process
2Ty processes

older
UNIXes

s 3
Java % %

many threads/procesy

one process

3
33

33

3

many threads/process
many processes

Mach, NT,
Chorus,
Linux, ...



